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Abstract. The goals of this research were to create a labeled dataset of tree
shadows and to test the feasibility of shadow-based tree type identification using
aerial imagery. Urban tree big data that provides information about individual
trees can help city planners optimize positive benefits of urban trees (e.g.,
increasing wellbeing of city residents) while managing potential negative
impacts (e.g., risk to power lines). The continual rise of tree type specific threats,
such as emerald ash borer, due to climate change has made this problem more
pressing in recent years. However, urban tree big data are time consuming to
create. This paper evaluates the potential of a new tree type identification
method that utilizes shadows in aerial imagery to survey larger regions of land in
a shorter amount of time. This work is challenging because there are structural
variations across a given tree type and few verified tree type identification
datasets exist. Related work has not explored how tree structure characteristics
translate into a profile view of a tree’s shadow or quantified the feasibility of
shadow-only based tree type identification. We created a consistent and accurate
dataset of 4,613 tree shadows using ground truthing procedures and novel
methods for ensuring consistent collection of spatial shadow data that take
binary and spatial agreement between raters into account. Our results show that
identifying trees from shadows in aerial imagery is feasible and merits further
exploration in the future.

Keywords: Aerial imagery � Urban trees � Labeled data creation � Ground
truthing � Smart cities � Tree disease � Urban tree big data

1 Introduction

The goal of this study was to maximize the accuracy of classification of tree types
based on corresponding shadows in aerial imagery. The study flow is depicted in
Fig. 1. The image on the left displays a subsection of the high spatial resolution aerial
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imagery used as an input in this study. The image in the center shows the same region
with its corresponding final shadow annotations, which were part of the dataset created
and utilized in this research. The third box shows the output of this research, which was
synthesized through the analysis of the dataset created in the intermediate step of this
research.

Often overlooked, trees are a key part of a sustainable, content, and safe city. Urban
trees provide shade, clean air, and increase the wellbeing of city residents. A study in
Chicago showed that trees help build community and lessen crime, and a view of trees
from an office window increases job satisfaction and well-being [15, 22]. Information
on the location of specific types of trees can assist city leaders in making sustainable
decisions that benefit urban trees and protect urban infrastructure. For example, a map
of tree types in urban areas could assist in the diversification of urban forests to prevent
tree pests and diseases, such as emerald ash borer, from devastating urban tree canopies
[3, 4, 14, 27]. Tree maps could also help electrical companies monitor trees located
near power lines. Trees falling onto power lines have caused many power outages and
forest fires in recent years [1, 8]. In 2018, trees close to a powerline were the cause of
the Camp Fire in California, a wildfire that killed 88 people [7, 28]. Some types of trees
have lower resistance to wind than others, making them a hazard to surrounding
infrastructure [28]. Knowing where different types of trees are located in relation to
power lines can help cities better manage risks to public safety through tree trimming
and removal efforts.

This problem is challenging for several reasons. Manual field surveys are time
consuming and labor intensive. Therefore, they are not feasible for tree type identifi-
cation over a large geographic extent. There is also limited dataset availability.
Although extremely high spatial resolution LiDAR (i.e., centimeter resolution) and
hyperspectral (i.e., sub-meter resolution) data have been used in some studies, these
data do not cover expansive geographic regions [28]. Additionally, there is a lack of
labeled training data. Thus, it is hard for machine learning approaches to be applied to
solve this problem. Most previous literature has not made an effort to address this issue.
Because of the large variation among trees of the same type, a large labeled training
dataset is an essential aspect of solving this problem. Additionally, the process machine
learning and deep learning methods depend on to produce their output is hard to
interpret, so it can be difficult to improve model performance [9, 27].

Fig. 1. Study flow.
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There have been some successes in geospatial image detection using deep learning
[10, 20, 25, 26, 30]. However, this method has been applied to detect objects that are
clearly distinguishable by the human eye. In satellite imagery, trees appear to be green
circles, and not much distinction is visible on the tree type level [24]. Other studies
have classified trees based on hyperspectral imagery [5, 13, 29, 31], but these data are
not available over a large geographic extent at a sufficiently high spatial resolution to be
useful in widespread individual tree type classification. Likewise, high spatial resolu-
tion LiDAR data (i.e., centimeter resolution) has been used to study tree architecture [2,
12], but these datasets are also limited to custom studies. The most widely available
remote sensing dataset with sufficient spatial resolution for studying individual trees
remains RGB aerial imagery. Aerial imagery is collected in many urban counties, such
as Hennepin and Ramsey Counties in Minnesota, at a 4–8 cm resolution, which is
considered high spatial resolution [6, 16].

Our previous work has suggested that shadows could be used to classify trees based
on their type, with some promising preliminary results using deep learning to classify
trees in three guesses [28]. However, the actual differences in signatures of the shadows
have not been characterized and their effectivity has not been quantified.

To overcome limitations of related work, our approach decomposes this problem
down into two steps. First, a high-quality dataset of labeled tree shadows was created.
Then, visual signatures of nine different types of trees in the dataset—ash, elm,
hackberry, linden, locust, maple, oak, pine, and spruce—were analyzed and summa-
rized. These observations were used by two human raters to test the feasibility of tree
type identification based on shadows.

This work makes three major contributions. First, it offers a method to ensure the
consistency of spatial shadow data. To create the dataset, shadows were annotated in
aerial imagery. The tree type identification field survey used to create the dataset in this
work was also verified manually to ensure its accuracy. Second, this work creates a
labeled dataset of 4,613 trees based on the aforementioned methods to improve con-
sistency between human raters. Third, this work details unique and distinct charac-
teristics of different tree types based on shadow-only identification.

Relevance to Big Data. The aerial imagery used in this study had a very high spatial
resolution (i.e., 4–8 cm) and required a large amount of storage space. For example,
Ramsey County 7.6 cm resolution imagery covering 440 square kilometers was
12.8 GB. By this estimation, the continental United States, which spans approximately
8 million square kilometers, could require around 0.23 petabytes of storage. Further-
more, due to the large volume of trees in urban environments, an inventory of indi-
vidual tree types that covers a large geographic region would be very big. The spatial
and temporal resolution of aerial imagery will continue to improve in the future,
making this problem even more relevant to big data forums in the coming years.

Scope. This paper focuses on the creation of a consistent and accurate dataset of tree
shadows that can be used to train and test machine learning and deep learning models
in the future. The following topics are outside the scope of this paper: analysis of
extremely high spatial resolution hyperspectral and LiDAR data for tree type identi-
fication and application of machine learning and deep learning methods. Classification
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here is limited to tree type classification by human raters, which is an important
preliminary step to understanding the feasibility of machine learning-based approaches.

Outline. Section Two formally defines the problem. Section Three describes the
approach we followed to create the labeled dataset and identify tree signatures. Sec-
tion Four discusses the results of each phase of the approach. Section Five concludes
the paper and suggests next steps of this study.

2 Problem Definition

Input

• High spatial resolution RGB aerial imagery (i.e., 4–8 cm resolution).
• Low spatial resolution LiDAR data (i.e., 1 m resolution).
• Field survey point datasets covering limited regions of Hennepin County and

Ramsey County (Minnesota, USA).
• Pre-existing domain knowledge (i.e., information from published field guides).

Output

• Detailed rules and guidelines for classifying shadows by type.

Objective

• Maximize tree type identification accuracy.

Constraints

• Date and collection time of input aerial imagery was not available.
• Some datasets (i.e., high spatial resolution hyperspectral and LiDAR data) con-

sidered important in previous research aiming to identify trees was not available to
the authors for the study region (as of September 23, 2019).

• Dataset of labeled tree shadows must be representative of the entire population.

3 Methods

The problem was broken down into two sub-problems. To determine important char-
acteristics for distinguishing among nine different types of trees, the raters had to
observe many samples of different types of trees. Thus, the first phase was creating a
dataset with a high accuracy of labeled tree types and a high rate of consistency across
shadow annotations. This phase consisted of ground truthing, dataset consistency
testing, and data annotation (Fig. 2), described in further detail later in Sect. 3.1.

The goal of the second phase was to determine important characteristics for
identifying tree types from shadows and to test the accuracy of identification of tree
types based on their observed signatures. During phase two, certain tree types were
chosen for closer observation based on their presence in the dataset: then signatures of
these tree types’ shadows were observed and validated (Fig. 2). This is described in
further detail in Sect. 3.2.
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3.1 Labeled Dataset Creation

In the first phase of this study, pre-existing field survey datasets used to label the type
of individual trees seen in aerial imagery were ground truthed (verified manually) to
ensure accurate genus-level identifications. Dataset consistency testing was conducted
to ensure consistent annotations between raters and guidelines for consistency testing
were established. Using dataset consistency testing guidelines, a dataset of 4,613
shadows was annotated, and each shadow was labeled based on the verified field
survey.

Ground Truthing. To assess the accuracy of the tree type identification dataset, two
raters visited the locations of 100 tree points and identified them independently from
the field survey. For safety reasons, the trees were selected from a 0.39 square kilo-
meter area of the East Bank on the University of Minnesota campus. All unobstructed
tree shadows within the test area were annotated. The 271 total annotated data points
became the sample space for this experiment.

In ArcGIS, the genus and species data were removed from the feature class’s
attribute table and 100 of the 271 points were randomly selected. Each selected tree
was visited, and its leaves, bark, and fruit, if present, were photographed. Figure 3
displays data collected for tree 0. Corresponding data were collected for every tree
visited.

Fig. 2. Workflow of this study.

Fig. 3. Ground truthed data point.
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After photographing the trees, raters identified their type using the following two
field guides: Minnesota Trees and The Sibley Guide to Trees [19, 21]. The tree genus
and species identifications from the original dataset were then matched with the raters’
identifications. Percent agreement calculations were used to evaluate dataset accuracy
based on ground truthed identifications.

Dataset Consistency Testing. To optimize consistency in data annotation between
raters, a two-part dataset consistency test was designed to measure both binary
agreement and spatial overlap. A fishnet, or grid covering the point dataset overlaid on
the aerial imagery, was created and used as a coordinate system to randomly select data
points for sampling. Grid extents were standardized. Two random numbers, repre-
senting the x and y coordinates of the grid, were generated. If a randomly generated cell
in the fishnet contained points, all points within the cell were moved to the base of the
corresponding tree trunk. Points were deleted if there were no local trees to which they
could be assigned. Random cells were generated until the Hennepin 2015 dataset
contained approximately 40 points, the Ramsey County 2015 dataset contained
approximately 30 points, and the Ramsey County 2017 dataset contained approxi-
mately 30 points.

Each rater recorded a binary measure (1 or 0) for each data point indicating whether
the tree was satisfactory for data annotation based on the clarity of the tree’s branch
structure. If determined suitable, the shadow was outlined according to guidelines
established by the raters. Examples of annotations collected by each rater are shown in
Fig. 4. Original annotations were traced for image clarity.

Once each rater had completed the dataset consistency test, binary agreement was
assessed using the Cohen’s Kappa Statistic [23, 32]. Cohen’s Kappa is a statistic that
accounts for chance when measuring agreement between raters on a scale of 0–1 where
0 is the probability of agreement based on random chance and 1 is perfect agreement.
Equation (1) is the Cohen’s Kappa statistic [23]. Po is the agreement between the two
raters and pe is the chance agreement expected to happen for the given experiment.
Additionally, spatial agreement between tree shadow annotations was measured
through a calculation of percent overlap between the outlines of each rater (Eq. (2)).

Fig. 4. Examples of shadow annotations collected by each rater during dataset consistency
testing.
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j ¼ po� pe
1� pe

ð1Þ
P

areas of intersection
P

areas of intersectionþ P
area of annotations� intersection areað Þ � 100% ð2Þ

Multiple phases of analysis were conducted until the Cohen’s Kappa value met or
exceeded a value of 0.800 and the average percent overlap over all three datasets met or
exceeded a value of 75%.

After each phase of analysis, the raters reviewed and adjusted the codebook to
increase their accuracy and consistency. For example, raters decided to annotate
shadows as close to the tree as possible, and trees without distinct branches or canopies
were no longer included in the dataset.

A similar procedure was employed to confirm that each rater’s annotations
remained consistent over time. The raters annotated randomly selected points and
ensured that the agreement between raters met preset thresholds. Then, no less than two
weeks later, each rater re-annotated the randomly selected points. Each rater’s self-
agreement was evaluated using the same methods as inter-rater consistency testing. If
binary or spatial agreement was not satisfactory (i.e., less than 0.800 and 75%,
respectively), the process was repeated.

Annotation Methods. Shadow annotation consisted of two phases. First, annotations
were auto-generated for each point in the field survey dataset. Then, each annotation
was reviewed and revised to ensure its quality and adherence to guidelines established
in the dataset consistency phase of this research.

To auto-generate annotations for points in the field survey dataset, normalized
height models (NHMs) were created in ArcGIS using digital elevation models and
digital spatial models, both of which are LiDAR derivatives. The aerial imagery dataset
used in this study was integrated, so the dates and times of collection were not
available. Thus, shadow size and direction information had to be approximated for each
NHM used. To do this, five shadows were randomly selected from the extent of each
NHM. The quality of the shadow and clarity of the tree’s canopy in the NHM were
reviewed. If the height and width of the shadow were distinct and the range of the tree’s
canopy in the NHM was clear and relatively even, then the shadow was annotated.
Otherwise, a new point was randomly selected from the field survey. Based on the
shadow annotations and the canopies in the NHM, the angle of the shadow (azimuth),
the height-of-tree to length-of-shadow ratio, and the width-of-shadow to height-of-tree
ratio were calculated. The angles and ratios were averaged across the five randomly
selected trees, and the extent of the NHM was noted. This information and the field
survey dataset were used as inputs into a MATLAB script, which generated an initial
set of shadow annotations.

Each annotation was then reviewed by the raters. Based on the dataset consistency
guidelines developed earlier in this work, annotations corresponding to shadows with
significant obstruction by other objects (i.e., cars, houses, other shadows), low contrast
with their background, or a significant number of branches too narrow to be visible in
the aerial imagery (i.e., the tree is very young) were deleted. Annotations
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corresponding to trees removed before the aerial imagery was collected were also
deleted. The size of each pre-generated annotation was checked and edited if necessary
to ensure that it adequately suited the shape and extent of the tree’s shadow. The
completed dataset contained 4,613 shadows.

3.2 Identifying Tree Shadow Signatures in Aerial Imagery

To determine the differences among shadows of different types of trees, each tree type
was observed in aerial imagery. Distinct characteristics were noted and, where possible,
field guides with limited information about the characteristics of the silhouettes of
different types of trees were reviewed to refine the observations and to guide further
exploration.

Tree Type Selection. Nine types of trees were selected for identification in this study:
ash, maple, linden, elm, oak, hackberry, locust, pine, and spruce. A tenth category
included negative examples. The types of trees included in this analysis were the most
common tree types in the initial 1,500 shadow dataset that the raters annotated, which
included shadows from Hennepin County 2015 and Ramsey County 2015 data. Tree
types were selected for identification based on their presence in the original dataset so
that each category had an adequate number of samples.

Visual Signature Identification Methods. Raters reviewed samples from a small
subsection of the dataset and created guidelines for distinguishing the nine chosen
types of trees. To improve their ability to identify trees, raters predicted what type of
tree they were annotating while growing the dataset and checked the accuracy of their
guess with the field survey dataset. If they noticed other patterns when they were
expanding the dataset, they added those patterns to the list of rules. Field guides were
reviewed in order to gain additional insight into potential structural differences among
the nine chosen types of trees.

Feasibility Testing. Feasibility testing was conducted to verify the observations made
in the second phase of this study. In this phase of the study, two human raters identified
tree types based on shadows. As they conducted feasibility testing, they refined tree
type characteristics based on their performance (Fig. 5).

Fig. 5. Refinement based on feasibility testing.
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Ten-Tree-Type Feasibility Testing. Each rater began by annotating a sample of shad-
ows from the same aerial imagery dataset (Ramsey County 2018 7.6 cm resolution
data). Information about the annotations was extracted to a separate file, where a
portion of samples from each type of tree was randomly selected so that all ten
categories of trees (maple, ash, pine, spruce, hackberry, locust, oak, linden, elm, and
miscellaneous) were evenly represented. However, the distribution of tree types in the
miscellaneous category was not even. From the evenly distributed dataset, 20 shadows
were randomly selected, and a screenshot of each shadow was then taken at a consistent
zoom (1:275). The screenshot and its identifying information were then put into a
presentation, which became a test for the other rater. Each rater observed the 20
shadows that the other rater had annotated and noted distinct characteristics about the
shadows, their top two identifications for the type of tree, and their final identification
for the type of tree. This information was then compared to the identification included
in the field survey point dataset, and the accuracy and Cohen’s Kappa of the rater’s
classifications were calculated.

Ash-Tree Feasibility Testing. Methods followed for ash-tree feasibility testing were
similar to methods followed in the ten-tree-type feasibility test except that there were
only two categories, Ash and Miscellaneous.

4 Results

4.1 Experimental Goals

There were three goals of this research:

1. Create a substantial, accurate, and consistent dataset that can be used as a basis for
machine learning and deep learning models in future research.

2. Observe and detail characteristics that are distinct among the shadows (profile
geometries) of nine different types of trees and could be used to identify types of
trees from their shadows in aerial imagery.

3. Test the feasibility of shadow-only-based tree type identification by human raters to
validate the reliability of the characteristics observed in the second phase of this
study and to better understand the potential for machine learning and deep learning
classifiers to accurately classify trees by their shadows.

4.2 Labeled Dataset

To create an accurate dataset, ground truthing methods were employed to determine the
accuracy level of the field surveys used in this study. Table 1 displays the agreement
between the tree type identification point dataset and the tree genera and species data
collected by the raters. The accuracy of the overall type level agreement was extremely
high—97.9% (Table 1). One outlier is the accuracy of the elm type identification,
which was very low. However, this can be discounted due to the small number of elm
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trees in the sample space. This shows that the dataset labels were sufficiently accurate
to observe structural trends among different types of trees. These results also show that
there are inaccuracies, although small, in manual identification.

Dataset consistency methods were conducted to ensure that shadow annotations
had consistent qualities and dimensions in relation to the size of the tree. First, these
methods were utilized to measure the agreement between annotations created by each
rater. The two raters met the preset consistency thresholds (based on averages) in their
third phase of testing. The results for the third phase of testing are shown in Table 2.

Testing was also conducted to measure the consistency of a rater’s annotations over
time. To do this, each rater annotated a set of 100 points that had met the agreement
standards between raters. Two weeks later, the rater re-annotated the same subsection
of the dataset and compared their annotations to the annotations they had collected two
weeks prior using the same statistics mentioned previously. Both raters met the
required standards for self-agreement.

Table 1. Tree type identification dataset accuracy assessment.

Genus Genus (type)
agreement (%)

Species
agreement (%)

Total
number of trees

Ash 100. 0.00 1
Elm 50.0 50.0 2
Hackberry 100. 100. 1
Linden 100. 75.0 8
Locust 100. 100. 18
Maple 100. 76.2 21
Oak 100. 80.0 15
Pine 100. 85.7 7
Spruce 100. 100. 7
Miscellaneous 92.9 64.0 14
Inaccessible trees – – 6
Total 97.9 83.3 100

Table 2. Results from third phase of dataset consistency testing.

Metric Hennepin
County 2015

Ramsey
County 2015

Ramsey
County 2017

Total

Cohen’s Kappa 0.867 0.878 0.742 0.873
Percent agreement 93.5 93.9 90.9 93.7
Percent overlap 78.9 73.7 77.8 76.3
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5 Visual Signature Identification and Validation

Signature Identification. Observations made about each of the nine types of trees
analyzed in this research are shown in Table 3, which displays an example, icon, and
description of the nine types of trees in this study. The grey area in the icon represents
“fuzziness”, while the black lines represent distinct branches. Icons are meant to
highlight certain characteristics described in the narrative and are not to scale. The
comments and examples included in the table were the most representative of the trees
contained in the dataset.

Authors made several observations throughout this analysis. Previous research has
noted that maple trees and ash trees are notable for their opposite branching. However,
distinguishing whether a tree had opposite or alternate branching based on its shadow
in aerial imagery was challenging and led to many incorrect tree type classifications.
Additionally, young trees look different from their fully matured counterparts [11, 12].
As a result, the appearance of younger trees is not included in Table 3. One of the most
distinct characteristics among tree types was “fuzziness” of the tree. Fuzziness is seen
in aerial imagery because many small branches are not clearly visible due to the
resolution. However, this characteristic is especially noteworthy in ash trees, which
have a lot of fuzziness around their terminal branches.

Feasibility Testing. The purpose of feasibility testing was to verify whether the sig-
natures observed earlier in this study were valid. Two types of tests were conducted:
ten-tree-type feasibility tests and ash-tree feasibility tests. The results of the ten-tree-
type feasibility tests are shown in Figs. 6 and 7.

Over the course of ten-tree-type feasibility testing, each rater improved their
accuracy in one and two type identification predictions. During trials 1 and 2, raters
strictly followed the guidelines they had created. However, after viewing many more
shadow samples for each type of tree and noticing heavy variation among shadows of
the same tree type, raters attempted a more “instinct-based” approach, which likely
accounted for the dip in accuracy in the third trial. In trial 4, raters used a tree type
narrative they had created. The narrative included descriptions and example shadows
for each type of tree. Comparing the tree shadows they were observing to other tree
shadows in the dataset with known labels helped each rater improve their identification
accuracy, as shown in the figure. Accuracy improved when comparing unknown
samples to known samples, which demonstrates the potential for machine learning
techniques to be applied to this problem.

Additionally, the identification of the 100 trees during the ground truth phase of this
study took 25 h to complete. On the other hand, the identification of 20 trees during the
feasibility testing phase of this study took approximately one hour to complete. Thus, if
this method was scaled up, trees could potentially be classified up to five times faster
than traditional methods, even before the application of machine learning methods.

Results for ash-tree feasibility testing are shown in Figs. 8 and 9. In Fig. 8, the blue
columns represent identification accuracies. The horizontal blue line represents the
percent accuracy achieved based on a random guess. Results improved after the first
trial and demonstrate potential for identification of ash trees from their shadows. In
Fig. 9, blue columns represent Cohen’s Kappa values. The Cohen’s Kappa values for
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Table 3. Tree structure observations.

Type Example Icon Distinctive Characteristics
in Shadows

A
sh

• Trunk splits at start of canopy 
[17]

• Fuzzy, feather-like ends of dis-
tinct terminal branches 

• Uneven canopy shape surround-
ing the main branches

El
m

• Trunk splits into many distinct 
branches [17] 

• Wavy branches
• Light fuzziness
• Branches grow at steep upward 

angle, but may angle down at 
ends (water fountain shape) [17] 

H
ac

kb
er

ry
 

• Distinct U-shaped fork in trunk 
occurs near the initial branches 
of the tree canopy [21] 

• Straighter branches than locust 
trees, which resemble hackberry 
trees

• Many distinct branches create 
smooth canopy outline

Li
nd

en
 

• Very round, smooth, oval cano-
py, especially at top [21] 

• Relatively flat branch angle.
• Trunk usually doesn’t split, but if 

it does, the split is narrow
• Few dark, distinct branches
• High degree of uniform fuzziness

Lo
cu

st
 

• Wide trunk split, sometimes U-
shaped 

• Many distinct branches
• Squiggly, spirally fuzziness 
• Distinct branches are squiggly 

and may have a few significantly 
curved gnarls [17, 21] 
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ash-tree-feasibility testing are more consistent than the ten-tree-type feasibility test
Cohen’s Kappa value, suggesting that the differences are easier to observe. These clear
differences may make ash classification more conducive to machine learning.

M
ap

le

• Distinct rounded or champagne 
glass-shaped canopy [17, 21] 

• Minimal branching below the 
trunk split

• Many straight distinct branches 
at a steep upward angle [17, 21]
and smooth uniform fuzziness 
[21]

• Narrow branches are close to 
each other [21] 

O
ak

Possibility 1 (shown in icon):
• Rarely have trunk split
• Relatively flat branches skinny 

compared to trunk [21] 
• Haphazard branch arrangement
Possibility 2:
• Dark, gnarled branches and trunk 

[17]

Pi
ne

• Mostly black shadows
• Speckled [17] 
• Rounded top 
• Short compared to width

Sp
ru

ce
 

• Dense black shadows
• Jagged edges
• Pointy top [17] 
• Skinny compared to height [17] 
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Fig. 6. Percent accuracy for each rater for ten-tree-type feasibility testing.

Fig. 7. Cohen’s Kappa value achieved by each rater for ten-tree-type feasibility testing.

Fig. 8. Percent accuracy by each rater for ash-tree feasibility testing.
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6 Conclusions and Future Work

In this study, we created a dataset of 4,613 clear and distinct labeled tree shadows,
established rules and guidelines for identifying trees based solely on shadows, and
refined these rules to maximize feasibility accuracy scores. Our study shows there are
distinct differences among the profile geometries of trees that allow them to be accu-
rately classified by human raters faster than traditional field survey methods. Distinct
differences among tree types also demonstrates the feasibility of classifying trees based
on their shadows using automated methods.

The domain-knowledge outlined in this paper can be used to create machine
learning and deep learning models that identify types of individual trees in aerial
imagery covering large regions. Due to the large amount of high spatial resolution
aerial imagery as well as the large volume of individual trees, supercomputers or cloud
computers may be necessary to improve the scalability of this approach [18]. Addi-
tionally, as higher resolution hyperspectral and LiDAR data become more widely
available, these methods could be explored in tandem to create more reliable classi-
fication results.
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Fig. 9. Cohen’s Kappa value achieved by each rater for ash-tree feasibility testing. (Color figure
online)
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